Effective Computation of Maass Cusp Forms

نویسندگان

  • Andrew R. Booker
  • Andreas Strömbergsson
  • Akshay Venkatesh
  • Dennis Hejhal
چکیده

We study theoretical and practical aspects of high-precision computation of Maass forms. First, we compute to over 1000 decimal places the Laplacian and Hecke eigenvalues for the first few Maass forms on PSL(2,Z)\H. Second,we give an algorithm for rigorously verifying that a proposed eigenvalue together with a proposed set of Fourier coefficients indeed correspond to a true Maass cusp form. We apply this to prove that our values for the first ten eigenvalues on PSL(2,Z)\H are correct to at least 100 decimal places. Third, we test some algebraicity properties of the coefficients, among other things giving evidence that the Laplacian and Hecke eigenvalues of Maass forms on PSL(2,Z)\H are transcendental.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maass Cusp Forms for Large Eigenvalues

We investigate the numerical computation of Maaß cusp forms for the modular group corresponding to large eigenvalues. We present Fourier coefficients of two cusp forms whose eigenvalues exceed r = 40000. These eigenvalues are the largest that have so far been found in the case of the modular group. They are larger than the 130millionth eigenvalue.

متن کامل

Applications of a Pre–trace Formula to Estimates on Maass Cusp Forms

By using spectral expansions in global automorphic Levi–Sobolev spaces, we estimate an average of the first Fourier coefficients of Maass cusp forms for SL2(Z), producing a soft estimate on the first numerical Fourier coefficients of Maass cusp forms, which is an example of a general technique for estimates on compact periods via application of a pre–trace formula. Incidentally, this shows that...

متن کامل

Locally Harmonic Maass Forms and the Kernel of the Shintani Lift

In this paper we define a new type of modular object and construct explicit examples of such functions. Our functions are closely related to cusp forms constructed by Zagier [37] which played an important role in the construction by Kohnen and Zagier [26] of a kernel function for the Shimura and Shintani lifts between half-integral and integral weight cusp forms. Although our functions share ma...

متن کامل

A Large Sieve Zero Density Estimate for Maass Cusp Forms

A Large Sieve Zero Density Estimate for Maass Cusp Forms Paul Dunbar Lewis The large sieve method has been used extensively, beginning with Bombieri in 1965, to provide bounds on the number of zeros of Dirichlet L-functions near the line σ = 1. Using the Kuznetsov trace formula and the work of Deshouillers and Iwaniec on Kloosterman sums, it is possible to derive large sieve inequalities for th...

متن کامل

Maass Relations in Higher Genus

For an arbitrary even genus 2n we show that the subspace of Siegel cusp forms of degree 2n generated by Ikeda lifts of elliptic cusp forms can be characterized by certain linear relations among Fourier coefficients. This generalizes the classical Maass relations in genus two to higher degrees.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005